Role of Novelty and Inertia in Generating Satisfaction and WOM in Smart Wine Tourism

Jian-Lin Xiong¹, Min-Hong Wang², Yu-Xiang Liu¹, Yi Chen¹ and Tsai-Fa (TF) Yen³*

¹College of Tourism and Urban-Rural Planning and Research Center for Panxi Tourism Development, Xichang University, Sichuan, China.
²School of Management, Shanghai University, Research Center for Panxi Tourism Development, China
³Guangzhou College of Technology and Business, Guangdong Province, College of Tourism and Urban-Rural Planning & Research Center for Panxi Tourism Development, Xichang University, Sichuan, China.

Authors’ contributions

This work was carried out in collaboration among all authors. Author TFY designed the study, performed the statistical analysis and wrote the protocol and authors MHW and JLX wrote the first draft of the manuscript. Authors MHW and YXL managed the analyses of the study. Authors JLX and YC managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

Developing smart wine tourism is an effective solution to respond to the COVID-19 and restore the tourism economy for traditional wine tourism destinations. The application of smart tools in tourism destinations has drawn attention in the tourism industry recently. This study aimed to investigate the impacts of novelty and tourism inertia on satisfaction and WOM, examined the mediating effects of satisfaction on the novelty, tourism inertia and WOM relationship in smart wine tourism. This study used valid survey data of 419 tourists in the wine cultural event held at Yibin, and tested the research hypotheses undertaken structural equation modeling (SEM) approach. The principal findings of this study were that both novelty and inertia were key antecedents of satisfaction and WOM and the mediating role of satisfaction on inertia and WOM was confirmed. Finally, the manageable results for smart wine tourism managers and future researchers were drawn.
Keywords: smart wine tourism; word-of-mouth (WOM); tourism inertia; novelty; satisfaction.

1. INTRODUCTION

COVID-19 has greatly affected China’s social economy and people’s lives; in particular, the tourism industry has suffered a huge impact and has almost stagnated in the short term. Tourism managers need to anticipate and react wisely to overcome this new crisis. As a bridge between destinations and tourists, smart technology was a critical aspect of the economic recovery of tourism, and developing smart tourism was not only an effective way to improve local competitiveness, but also a solution to the growth of tourism business [1-2].

Smart tourism destinations (STD) used technology as the medium to provide a personalized travel experience, and smart tourism destinations’ innovation and competitiveness were based on applications [2], which improved the independence and freedom of tourists in travel activities [3]. Also, the channels available to searching for tourism information were increased by the emergence of the Internet (e.g. online websites, social networks) and new devices (e.g. mobile phones, smartwatches and smart televisions) [4]. Smart technologies and tools provided tourists with travel information, which played a pivotal role in the acquisition, utilization, supply and sharing of travel-related information, and it also inspired and stimulated them the travel experience of STD [3,5].

Of particular concern was that the mobile Internet and smart technology changed individual’s travel patterns and lifestyle, profoundly affected the enjoyment experience and convenience facilities required by the public [6]. For instance, tourists can not only share others with travel experience through verbal forms but also express their opinions online and give positive or negative comments on all details of the journey, including food, accommodation, transportation, shopping and entertainment through the platform that provides tourist information service. And these reviews online feedback the characteristics of tourism consumption to services suppliers via big data and in-depth mining, to ensure the effective connection of the tourism supply and tourism consumption chain [7]. Word-of-mouth (WOM) of STD can also be spread online, and therefore establishing a positive WOM is particularly important for the traditional tourism destination developing smart tourism.

Wine tourism is one of the tourism categories with Chinese traditional cultural characteristics, as Chinese wine capital, Yibin of Sichuan has rich wine cultural resources. Nowadays, wine tourism products are becoming more and more homogeneous, and wine tourism was not widely popular in China [8]. Thus, combining smart technology to develop smart wine tourism will be a better strategy for Yibin, because it may be able to seize the opportunity, stand out from the fierce competition and gain a positive WOM. Moreover, study found that a tourism destination used intelligent technology to optimize the use of tourism resources, which could improve the tourism experience, increase the competitiveness of destinations and improve residents’ live quality [1]. Tourists were generally worried about their inexperien with the destination, therefore, they were particularly interested in seeking travel-related information via smart tools, meanwhile, they generating the expectations of sources of information, which was a key for generating behavioral willingness, and fostering behavior ultimate satisfaction [1]. Therefore, compared with traditional wine tourism, developing smart wine tourism can bring more benefits and good reputation to the wine tourism destinations like Yibin.

Moreover, smart wine tourism was related to the tourist’s satisfaction [9]. Yen (2020) [10] also found that satisfaction was an important antecedent of WOM in wine tourism, and novelty played a moderating effect on the relationship between satisfaction and WOM. Meanwhile, tourism inertia negatively affected the relationship between destination image and WOM [11]. Numerous studies asserted that focusing on tourism WOM and satisfaction were predominant in the tourism literature, particularly, and the two determinants played a pivotal role in tourist’ behaviors, which were the focus of business managers and academics [12-15]. However, previous studies of WOM have not dealt with the relationships with novelty and inertia in smart wine tourism, and little solid evidence on smart wine tourism suggested one or more antecedents perform the effect on the satisfaction - WOM relationship. Thus, this research discusses and extends the previous studies by preforming an empirical test of the relationship between novelty, tourism inertia, satisfaction and WOM, and satisfaction as a mediator using structural equation model (SEM). This is particularly important because using
smart tools may bring more exploration desire to tourists with the sense of novelty, but it may also affect the travel preferences of tourists with tourism inertia, and these factors appear to influence simultaneously satisfaction and WOM in smart wine tourism.

Thus, this study set out to explore whether novelty and tourism inertia influence satisfaction and WOM in smart wine tourism context, and whether satisfaction play a mediator role. It has profound theoretical and practical significance. To attract potential tourists and users, and improve the reputation of wine tourism destinations, wine tourism enterprises and local governments can innovate smart tools, through the utilization of smart tools and the relationship between research variables.

Apart from this introduction, the study is structured as follows. Next section presents the literature review. Then, in the third section, the principal hypotheses underlying the research model are outlined. The fourth section shows sample measurement and collection, and the fifth section presents the methodology adopted for SEM and regression and the results and discussion associated with it. The final section discusses managerial implications, limitations and future directions for the current research.

2. LITERATURE REVIEW

2.1 Word-of-Mouth (WOM)

WOM was verified as a critical factor in the marketplace, affecting customer attitudes, behavioral intentions and decisions [16-17]. In tourism research, an unforgettable experience in a tourist destination had a significant impact on WOM [18]. Moreover, travel experiences based on smart technology enhanced the influence of destination brands [19], and also had an important impact on satisfaction, willingness to revisit and WOM [3,19].

Furthermore, new technology provided tourists with a better experience, opened up a new horizon for the tourism industry, which became the main source of destination innovation and competitive advantage, and brought “smartness” in the destination [6,20]. Several previous studies regarding the wine tourism found some influence factors of WOM, including event satisfaction, inertia, novelty, destination image, etc. [10-11,21]. Therefore, WOM is extremely critical in smart wine tourism and this study defines WOM as “the behavior of tourists making positive or negative evaluations and share with others after obtaining experience and services from smart wine tourism events” [9,22,23].

2.2 Satisfaction

The focus shifted from technology to improving tourist satisfaction in smart tourism context [2]. The study investigated the relationship between tourist satisfaction and tourism services provided by three smart tourism cities in Seoul, Busan and Jeju, and the results showed that smart tourism technology had a positive impact on satisfaction [5]. Several studies asserted that smart technology had a positive impact on tourists and destinations. On the one hand, with the help of smart tourism technology (STT), STD could easily collect tourist information, spontaneously interact and communicate with tourists, and tailor services to meet the needs of each tourist [3]. Personalized services met the needs of tourists and maximized their travel experience and satisfaction with smart tourism destinations [24]. On the other hand, STT was incorporated into smart devices and tourists used smart devices about destinations to learn about more information on destination accommodations, references or restaurants to expand their travel experience. If tourists had comfortable travel experience, then they had positive emotions, and the real experience of tourists increased [25]. For example, research found that intelligent technology provided tourists with the ability to search for hotel and travel information at all times, meanwhile, service providers used smart technology to increase the hotels’ or destinations’ brand awareness, enrich customers’ experience and overall satisfaction, and then improve customers’ loyalty [26].

As for the definition of satisfaction in this study, though tourism satisfaction was a comparison of tourists’ expectations and actual feelings [27], this study defines satisfaction as “judgments that main activities/service and additional activities/service of the event in smart wine tourism, provided a pleasurable level of consumption-related fulfillment, including levels of under- or over-fulfillment” [9,28].

2.3 Novelty

Novelty, derived from the Latin word Novus for “new”, referred to the new, compelling or unusual traits [29]. The optimal stimulation level theory explained that people sought new stimulation to
maintain their psychological pleasures [30]. To understand the relationship between novelty, satisfaction and WOM, it is critical to note the role of awakening in smart wine tourism behavioral intention and decision-making. The arousal theory of motivation believed that people were driven to involve in an activity to maintain the best psychological arousal level [31]. Seeking stimulation was closely related to novelty [32]. In this research, tourists can be driven by novelty to participate in smart wine tourism [10,25].

In smart tourism context, tourists use STT, e.g. augmented reality (AR) or virtual reality (VR), so that easily understood the depth and scope of their travel activities, and obtained such a wealth of information, which motivated and stimulated to enrich their travel experience in the destination [3]. Therefore, STT could not only help tourists understand the expectations of the real world, but also help tourists explore things that do not exist in the world during the experience [25] and then stimulate their novelty. According to Yen (2020) [10], novelty in smart wine tourism refers to “using smart technologies or tools to participate in visits, interactions, experiences and consumption activities in wine tourism, tourists get fresh, excited, surprised and challenging emotions or feelings”.

2.4 Tourism Inertia

Inertia was described as a multidimensional structure that contained the interrelationships of cognitive and behavioral inertia rather than equivalent dimensions [33-34]. Cognitive inertia referred to the tendency to consciously resist change and continue to make purchase decisions, while behavioral inertia referred to unconsciously continuing to clear behavior [35]. However, the psychological commitments or preferences in individual cognitive choices were embedded in their behavioral habits and eventually became behavioral inertia [36]. As a result, consumers’ perceptions and purchasing behavior became stable, and they tended to habitually avoid change [37]. In this case, consumers relied more on their previous experience or past behavior to make purchase decisions [38].

According to previous studies, it’s beneficial to investigate tourist inertia for tourism destination marketing and management [39]. Since some tourists sought novelty and were unwilling to revisit the same destination; on the contrary, there would also be others who were inclined to the familiar or same tourist destinations, hoping to achieve better leisure and emotional relaxation, although sometimes the experience was unsatisfactory [39-40]. Therefore, studying the relationship between tourists’ inertia and behavioral intentions such as satisfaction, revisiting, WOM, etc., will have a certain effect on the tourism market. This study believes that tourism inertia is “the habitual performance that tourists using smart tools to search, plan and travel to a wine tourism destination and then form arrangements in advance” [41].

3. RESEARCH MODEL AND HYPOTHESES DEVELOPMENT

The existing literature supported that novelty had a positive impact on tourists’ loyalty [41-42]. Niininen, Szivas and Riley (2004) [43] investigated the impact of novelty seeking on tourists’ intention to revisit and found that tourists pursuing higher novelty might want to revisit the same type of destination but were unwilling to return to the same destination. In wine tourism, smart tools can be used to navigate and display the scenes regarding wine, which make tourist learn more about wine culture and bring them new and different experiences. Tourists who felt novelty might generate a positive WOM shared and recommended this type of wine tourism destination to others in the future [42]. Therefore, this article assumes:

H1. Tourists’ novelty significantly positively affects WOM in smart wine tourism.

For Yanamandram and White (2006) [44], inertia meant a situation where customers repurchased due to laziness, inaction or passivity. Inertia was a motivating factor for behavioral loyalty, which promoted repeated consumption and prevented dissatisfied customers from turning to competitors [28,44-45]. Thus, in tourism research, tourists with high inertia still wanted to go to the same destination despite some dissatisfaction and complaints [39]. In this research, tourists with high inertia want to repeatedly choose a visited or familiar wine tourism destination, which leads to the lower switching willingness and the greater recommendation willingness [11]. Therefore, this study assumes:

H2. Tourists’ tourism inertia significantly positively affects WOM in smart wine tourism.
A considerable amount of literature on satisfaction and loyalty has been published. Some studies highlighted that satisfaction could result in a stronger willingness to repurchase and recommendation [12,46]. In other words, satisfaction had a significant impact on positive WOM [13]. In tourism context, if tourists were satisfied with their travel experience, they were more likely to return to the same destination and recommend it to others [47,48]. Furthermore, tourists used smart tools to navigate and guide during the wine tour, which made them felt comfortable, convenient and satisfactory, then the positive WOM of the wine tourism was promoted [10,12,14] Conversely, if a tourist had an unpleasant experience and unsatisfied, it's likely to generate negative WOM on wine destinations, including denigrating tourist attractions or services, spreading rumours and complaints [12,13]. Therefore, this study assumes:

H3. Tourists’ satisfaction significantly positively affects WOM in smart wine tourism.

The novelty was a new experience that was different from daily life, and it’s the joy of travel experience [49]. In wine tourism, upcoming technologies and smart tools can create a different experience for tourists, present them with visual and auditory stimulation [50], and immerse tourists in the new and challenging travel experience [25,51], thus tourists have a favourable experience, then they feel positive emotions and regard the destination as an attractive place. Therefore, this study assumes:

H4. Tourists’ novelty significantly positively affects satisfaction in smart wine tourism.

What we have known the reason why customers with high inertia intended to buy a product repeatedly were that they put in more effort and time and the switching cost might higher [44,52]. In the research of hotel management, although a customer was not completely satisfied with the service and experience of a certain hotel, a customer with high inertia still had a strong willingness to maintain a relationship with the hotel and formed the intention to revisit the hotel, because the customer felt more convenient [53,54,55]. Moreover, inertia was known to be associated with behavioral loyalty [28]. It is assumed that tourists with higher tourism inertia have pleasures, and then they are satisfied with the smart wine tourism destination. Therefore, this research proposes hypothesis 5:

H5. Tourists’ tourism inertia significantly positively affects satisfaction in smart wine tourism.

A large and growing body of existing researches investigated that destinations’ WOM were driven by tourists’ satisfaction [56-58]. Furthermore, the existing study also confirmed that the positive connection between tourists seeking novelty and loyalty was mediated by satisfaction [47]. According to this, in smart wine tourism activities, tourists with high novelty are satisfied with the wine tourism activities and then may give rise to the positive WOM. Therefore, this research proposes Hypothesis 6:

H6. Tourists’ satisfaction plays a mediating role in the relationship between novelty and WOM in smart wine tourism.

A survey has shown satisfaction generated a significant increase in WOM [58,59]. Meanwhile, the study believed that inertia increased customer loyalty, because daily behaviors and habitual behaviors enhanced customer loyalty [44]. In this research, to reduce the uncertainty of choice, tourists with high inertia will travel to a destination arranged or known by a travel agency through the suggestions of relatives and friends and experience. It make them more comfortable and happy, thus they are more willing to spread a positive WOM about the wine destination. Therefore, this research proposes Hypothesis 7:

H7. Tourists’ satisfaction plays a mediating role in the relationship between tourism inertia and WOM in smart wine tourism.

All in all, the proposed research model is detailed in Fig. 1.

4. SAMPLE AND MEASUREMENT

4.1 Measurement

In this research, a survey questionnaire on WOM, satisfaction, novelty and tourism inertia was conducted. The measurement items were culled and modified from previous studies. The back-translation method was used. Scales were translated to Chinese and then back-translated to English to provide accuracy.

The three items of tourism inertia (IN) were developed by Yen (2018a) [11] and Heeup et al. (2011) [22] were used to measure the inertia...
construct: “I am used to the existing travel planning methods”, “Compared to trying new tourist destinations, I prefer to travel in Yibin”, “I don’t like unfamiliar tourist destinations”, ranging from “totally disagree” (1) to “totally agree” (5).

Novelty (NV) was composed of four items that were adapted from Yen (2020) [10] and Cheng & Lu (2013) [54], and was described as freshness, adventure, excitement, challenge, and thrill: “I like to do something new”, “I like to take risks”, “I like to stimulate challenges”, “I like to thrill and stimulate”, ranging from “totally disagree” (1) to “totally agree” (5).

The scale for satisfaction (SA) was adapted using three items from Konuk (2019) [55]: “I am glad to take the time to attend the Yibin’s wine cultural event”, “It was a good decision to attend the Yibin’s wine cultural event”, “I am glad that I decided to attend the Yibin’s wine cultural event”, ranging from “totally disagree” (1) to “totally agree” (5).

Furthermore, two items adapted from Konuk (2019) [55] were used to measure WOM, with “totally disagree” (1) to “totally agree” (5): “I would tell others the advantages of leisure in Yibin’s wine cultural event”, “I would recommend others leisure activities in Yibin’s wine cultural event”, ranging from “totally disagree” (1) to “totally agree” (5).

4.2 Sampling

In this research, tourists who have participated in wine events in Yibin were selected for data collection, e.g. “Yibin Wine Culture Tourism Festival”. Data were collected during October 2019. A total of 430 questionnaires were collected, and 419 questionnaires were used in this study, after excluding 11 incomplete forms. The effective questionnaire rate reached 92%. This study used SPSS25.0 and AMOS22.0 statistical software to process the data.

4.3 Sample Characteristic

The sample of this study was classified by gender, age, occupation and levels of income and education. Of the 419 respondents, the gender ratio was 3 to 2. Most respondents in the sample were in the 23-28 age group. Most respondents had a high school education or above (59.4%). And the occupational composition included military, police and civil servants (4.5%), manufacturing personnel (4.8%), business/service personnel (22.2%), agricultural personnel (4.3%) and students (13.1%), and other occupational personnel accounted for 51.1% of the sample. A monthly income of less than 3,000 yuan was well over half of the sample (54.7%), which was the middle-lower income group.

5. METHODOLOGY AND DATA ANALYSIS

5.1 Reliability Pre-Test

To ensure the latent variables’ reliability, this study used Cronbach’s alpha to confirm the internal consistency of each construct [60-61], each construct must exceed the minimum standard for reliability of 0.7. Generally, the corresponding item should usually be deleted by following standards: the corrected item total correlation (CITC) value was less than 0.5 and Cronbach’s alpha of the deleted item was higher than the Cronbach’s alpha. The Cronbach’s alpha of IN, NV, SA and WO were 0.745, 0.908, 0.866 and 0.796, respectively. It could be seen from Table 1 that CITC value of four items on novelty was greater than 0.5 but the Cronbach’s alpha of “NV1” was increased after the item was deleted, so it was more reasonable that the item was deleted. Then, deleted the item “NV1” and the Cronbach’s alpha of novelty was 0.945, increasing 0.037. Therefore, the overall reliability value of NV was improved. All in all, the measurement scale of this research had 11 items.

5.2 Data Analysis

The data were examined for outliers. Normality was assessed using skewness and kurtosis indices for the scale items (see Table 2). The results indicated that the absolute value of the skewness was less than 3 and the absolute value of the kurtosis indice were less than 10, indicating that the sample data did not violate the normality assumption [62]. Then, we could perform a following-up analysis.

In the narrative statistics of each measurement item, as shown in Table 2, the average values of novelty, satisfaction, WOM, and tourism inertia were between 2.709-3.854, which was between disagreement and agreement. The average of the “WOM1” (I would tell others the advantages of leisure in Yibin’s wine cultural event) was highest, and “IN3” (I don’t like unfamiliar tourist destinations) was lowest. The greatest standard
deviation was “NV2” (I like to take risks) while the smallest was “SA2” (It was a good decision to attend the Yibin’s wine cultural event).

5.3 Exploratory Factor Analysis

In terms of assessing the construct validity of the proposed measurement model, studies have looked at the factor loading of each indicator [60] and determined that the standardized loading estimate should be above the minimum requirement of 0.5 and ideally 0.7 or higher with a significant p-value to confirm the convergent validity of a construct. (see Table 2), and the overall Cronbach’s alpha was .725, which was acceptable. And the overall KMO test was greater than .7 and Bartlett was significantly not equal to 0.000, which indicated that the variables had a strong correlation and were suitable for factor analysis.

Secondly, 11 items’ factor loadings were greater than 0.626 and t-values exceeded the critical value of 3.29 [63], which explained 76.79% of the variance and indicated that there was no serious common method error problem in the measurement of latent variables, and cross-loading (See Table 2). The scale used in this study has good construct validity. Overall, the scale used in this study had good validity, this research could be further analyzed.

Fig. 1. The research model. SA: satisfaction, WO: word-of-mouth, NV: novelty, IN: tourism inertia, the same below

Table 1. Pre-test of novelty (NV) reliability

<table>
<thead>
<tr>
<th>CITC</th>
<th>Cronbach’s alpha of the deleted item</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV1</td>
<td>0.592</td>
<td>0.945</td>
</tr>
<tr>
<td>NV2</td>
<td>0.843</td>
<td>0.863</td>
</tr>
<tr>
<td>NV3</td>
<td>0.877</td>
<td>0.850</td>
</tr>
<tr>
<td>NV4</td>
<td>0.873</td>
<td>0.852</td>
</tr>
</tbody>
</table>
Table 2. Data analysis (N=419). M = average; SD = standard deviation; λ = factor loading; SMC = Squared multiple correlations; α = Cronbach’s alpha; CR = construct reliability; AVE = average variance extracted

<table>
<thead>
<tr>
<th>Construct</th>
<th>items</th>
<th>M</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>λ</th>
<th>t-values</th>
<th>SMC</th>
<th>α</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>SA1</td>
<td>3.726</td>
<td>0.987</td>
<td>-0.492</td>
<td>-0.139</td>
<td>0.808</td>
<td>8.754</td>
<td>0.719</td>
<td>0.866</td>
<td>0.892</td>
<td>0.734</td>
</tr>
<tr>
<td></td>
<td>SA2</td>
<td>3.535</td>
<td>0.949</td>
<td>-0.353</td>
<td>-0.215</td>
<td>0.879</td>
<td>10.949</td>
<td>0.617</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SA3</td>
<td>3.589</td>
<td>0.995</td>
<td>-0.381</td>
<td>-0.217</td>
<td>0.881</td>
<td>8.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>WO1</td>
<td>3.854</td>
<td>0.998</td>
<td>-0.649</td>
<td>-0.23</td>
<td>0.845</td>
<td>5.989</td>
<td>0.687</td>
<td>0.796</td>
<td>0.839</td>
<td>0.723</td>
</tr>
<tr>
<td></td>
<td>WO2</td>
<td>3.795</td>
<td>1.022</td>
<td>-0.689</td>
<td>0.016</td>
<td>0.855</td>
<td>7.162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>NV2</td>
<td>2.9</td>
<td>1.334</td>
<td>0.16</td>
<td>-1.128</td>
<td>0.939</td>
<td>10.707</td>
<td>0.812</td>
<td>0.945</td>
<td>0.962</td>
<td>0.895</td>
</tr>
<tr>
<td></td>
<td>NV3</td>
<td>2.778</td>
<td>1.311</td>
<td>0.282</td>
<td>-1.086</td>
<td>0.945</td>
<td>9.523</td>
<td>0.844</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NV4</td>
<td>2.761</td>
<td>1.302</td>
<td>0.254</td>
<td>-1.061</td>
<td>0.954</td>
<td>6.744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>IN1</td>
<td>3.625</td>
<td>1.026</td>
<td>-0.334</td>
<td>-0.652</td>
<td>0.626</td>
<td>12.756</td>
<td>0.152</td>
<td>0.745</td>
<td>0.778</td>
<td>0.542</td>
</tr>
<tr>
<td></td>
<td>IN2</td>
<td>3.334</td>
<td>1.097</td>
<td>-0.2</td>
<td>-0.76</td>
<td>0.797</td>
<td>2.688</td>
<td>0.648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN3</td>
<td>2.709</td>
<td>1.199</td>
<td>0.308</td>
<td>-0.782</td>
<td>0.774</td>
<td>10.02</td>
<td>0.264</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Correlation and testing discriminant validity (N=419). Correlation is significant at 0.01 level (2-tailed). Correlation is significant at 0.05 level (2-tailed).

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Standard deviation</th>
<th>SA</th>
<th>WO</th>
<th>NV</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>3.617</td>
<td>0.868</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>3.762</td>
<td>0.829</td>
<td>0.586</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>2.813</td>
<td>1.249</td>
<td>0.083</td>
<td>0.127</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IN</td>
<td>3.223</td>
<td>0.818</td>
<td>0.107</td>
<td>0.109</td>
<td>-0.071</td>
<td>1</td>
</tr>
</tbody>
</table>

5.4 Confirmatory Factor Analysis

The measurement model was evaluated with a CFA using maximum likelihood estimation (MLE) based on the model's goodness-of-fit indices, reliability, and the convergent and discriminant validity of the constructs. The results showed that the model fit ($\chi^2 = 79.049$, df = 39, $p = .000$, χ^2/df = 2.027, GFI = 0.967 AGFI = 0.944, CFI = 0.983, RMSEA = 0.05) met the ideal value: χ^2/df was between 3 and 5, GFI and AGFI were greater than .9, CFI was greater than .95, and RMSEA was less than 0.08. On the whole, the measurement model of this study had a good fit.

Convergent validity was assessed from the magnitude and significance of the paths between each latent variable and its indicators [64]. Looking at Table 2, all factor loading were greater than 0.626 and reached a significant level. And average variance extracted (AVE) for each construct was above 70%, establishing the scale's convergent validity [65-66]. Furthermore, all combination reliability (CR) was greater than 0.5, and the square root of the AVE of each construct was greater than any inter-construct correlation estimates and the variance extracted estimates was also greater than the squared correlation estimate [66]. Therefore, both the convergent validity and discriminant validity of the measurement model were proved.

5.5 Structural Equation Modeling and Hypothesis Testing

This research used MLE (maximum likelihood estimation) to evaluate the structural model. The model fit indices indicated an acceptable fit ($\chi^2 = 79.049$, df = 39, $p = .000$, χ^2/df = 2.027, GFI = 0.967, AGFI = 0.944, CFI = 0.983, RMSEA = 0.05).

5.5.1 Main effects

Hypothesis 1 was confirmed by the significant positive relationship between NV and WO ($\beta = 0.07$, $t = 2.17$). Hypothesis 2 was supported by the significant positive relationship between IN and WO ($\beta = 0.25$, $t = 2.09$). Hypothesis 3 was supported by the strong positive relationship between SA and WO ($\beta = 0.59$, $t = 10.02$). Hypothesis 4 was confirmed since NV had significant positive relationship with SA ($\beta = 0.07$, $t = 1.89$). Hypothesis 5 was supported by the significant positive relationship between IN and SA ($\beta = 0.26$, $t = 1.93$). The explanatory power of SA was 2.6%, and the explanatory power of WO was 42.4%.

5.5.2 Mediating effects

To examine the mediating effects of satisfaction on the paths' relationships proposed in this study, the structural equation model (SEM) analysis was performed. Hierarchical regression was conducted in this survey and included three steps: step 1 dealt with the influence of the independent variable (NV or IN) on the mediating variable (SA); step 2 dealt with the influence of the independent variable (NV or IN) on the dependent variable (WO); step 3 dealt with the influence of the mediating variable (SA) and the independent variable (NV or IN) on the dependent variable (WO). The analysis results were as follows.

As for the test of hypothesis 6 (NV→SA→WO), only step 3 showed that the mediating variable (SA) and the independent variable (NV) had significant positive impacts on the dependent variable (WO), respectively (β(SA) = 0.07, $p < 0.05$; β(NV) = 0.06, $p < 0.001$). Thus, hypothesis 6 was rejected because SA did not play a mediating role between NV and WO.

While hypothesis 7 (IN→SA→WO) was supported since SA completely mediated between IN and WO. As Fig. 3a showed, IN and SA did not have a significant direct relationship. While IN had a significant positive relationship with WO ($\beta = 0.44$, $p < 0.01$), and IN explained 18.7% variance in WO (see Fig. 3b). When
putting the mediating variable (SA) in step 3, the influence coefficient of IN on WO dropped to 0.27, but still significant, and there was a significant positive relationship between SA and WO (β = 0.61, p < 0.001) (see Table 3c). SA and IN explained 40.7% of the variance in WO.

Fig. 2. Results for the structural model *p < 0.05; ***p < 0.001

Fig. 3. The test result of hypothesis 7. *p < 0.05; ***p < 0.001
5.6 Discussions

This study aimed to examine relationships between novelty, tourism inertia, satisfaction and WOM in smart wine tourism. It also aimed to examine satisfaction's mediating role in the relationships between novelty, tourism inertia and WOM. Also, it aimed to investigate whether the relationship between novelty, tourism inertia, satisfaction and WOM by smart tool categories differ significantly.

Firstly, the descriptive statistics indicated respondents mostly used self-driving and bus, and for the smart tools categories, booking, navigation and others accounted for a relatively high proportion. Therefore, most tourists traveled to wine destinations through self-driving or by bus, intended to arrange their itineraries through smart tools, e.g. booking tickets, accommodation and meals.

Secondly, the empirical results supported the six research hypotheses. The results showed that novelty, inertia and satisfaction positively and significantly affect the WOM of wine destination, supporting H1, H2, and H3. These findings were consistent with the findings of previous research, which suggested a positive relationship of novelty, inertia and satisfaction with WOM [10,14,47]. Moreover, the results showed that novelty and inertia had significantly positive impacts on satisfaction, in line with the findings [44,47,52] supporting H4 and H5.

Besides, inertia played a completely intermediary role between novelty and WOM, supporting H7. That is, tourism inertia directly led to good satisfaction [44], further affected the wine destinations' WOM, while there was no direct causal relationship between inertia and WOM, which was inconsistent with the empirical result that inertia was a promoting factor of behavioral loyalty [47]. The result also showed that satisfaction did not play a mediating role between novelty and WOM, and H6 was not supported.

6. CONCLUSION, IMPLICATIONS AND LIMITATIONS

6.1 Conclusion

The results of this study showed that novelty, inertia and satisfaction were direct determinants of WOM of wine destination. Nearly 60% of respondents had a high school education level or above in smart wine tourism destinations, which reflected that the main tourist group had relatively high levels of education, relatively wide-ranging knowledge, strong ability to accept new things, and had a great demand for technologies. Therefore, wine tourism destinations can develop and enrich smart tourism tools' such as dining, accommodation, traveling, shopping and entertainment.

6.2 Implications

6.2.1 Implications for tourism managers

Firstly, in terms of novelty, such as smart navigation tools, enterprises could design mobile phone games to make tourists "walk and play" more interesting in the wine destination. Tourists use mobile phones or other smart navigation terminals to open mini-apps or scan QR codes. Whenever they arrive at an important wine cultural tourism destination, there will be a checkpoint, the contents are all kinds of knowledge about wine. What's more, each game has various form, which not only pushes tourists to tour the wine destination but also deepens tourists’ understanding of wine culture. Furthermore, the study indicated the best environmental stimuli of smart tourism destinations had a positive impact on the tourist experience, therefore, when developing tourism products and services, enterprises should not pursue the excitement of the form, and should provide tourists with a novel and easy-to-play environment. For example, through the combination of technology and humanistic connotation, the wine culture and history of the destination can be shown to tourists in the form of stories or games through VR or AR, encouraging tourists to actively participate, enhancing the understanding and desire to explore wine culture, and satisfying tourists’ novelty.

Secondly, in terms of satisfaction, such as smart navigation tools, wine tourism destinations create mini-apps or applications on the map to update the road conditions, weather, and scenic people in real-time, increasing the tourists' expectations toward wine tourism destinations. Moreover, wine tourism destinations can enrich product categories and design creative souvenirs combining wine culture to meet the needs of tourists who use entertainment and shopping smart tools.

Then, in terms of tourism inertia, owing to that the tourists using transportation category and
destination guide category have higher inertia, enterprises can optimize and update these two categories to meet their travel and food needs in the wine tourism destinations. Take smart dining tools, for example, enterprises set QR codes of official account platforms or mini-apps at each attraction’s entrances and exits to inform tourists information about surrounding dining and accommodation, which make them familiarize themselves with the environment in advance to reduce the sense of strangeness.

6.2.2 Implications for governments
First and foremost, upgrade the functions of smart tools in Yibin’s wine tourism destinations, and provide tourists with personalized, professional and high-quality services based on satisfying food, lodging, travel, shopping and entertainment. For instance, create a smart tourism system in Yibin, which includes a series of functions such as car rental, dining, accommodation, ticket booking, shopping, navigation, and tour guide. At the same time, the on-site conditions should be matched the online functions. Users can easily obtain information about Yibin wine tourism destinations through the smart tourism system including scenic spots and surrounding information, electronic payment information and weather information, etc., to meet users’ requirements for destinations, increase expectations and encourage users to travel to the destination. Moreover, with the assistance of smart systems, tourists explore the destination freely and grasp effective information about the destination anytime, anywhere. Then, tourists can also exchange travel information and describe unpleasant or unforgettable travel experiences through online review sites. After that, the smart system will recommend information related the wine tours to target users through big data analysis. Therefore, it can be seen that by using new technologies to update the intelligent tourism system in time, wine tourism destinations can provide users with all-round services and fully meet the needs of tourists, thereby improving tourists’ satisfaction and positive evaluation of the destination.

Secondly, create a tourism website or social media account of Yibin City Government with complete information and timely feedback. Both residents and foreign tourists visit these travel websites or official accounts to give them the feeling that they are communicating with people rather than tools, thereby generating their positive and friendly trust and reputation. Thus, the official travel website should pay more attention to interactive design, attract online visitors through a rich virtual experience such as pictures, videos, and audio, and encourage them to travel to the destination. It can be also connected with other local government network sites through link functions such as “Like” and “Repost”, striving to build a province-wide smart tourism service ecosystem.

6.3 Limitations and Future Research
The study had some limitations, which serve to indicate several directions for future research. This research explores the relationship between novelty, tourism inertia, satisfaction and WOM. Following-up research can continue to explore the impact of gender differences, find differences in the evaluation of wine tourism destinations by male and female respondents, and put forward effective marketing suggestions for these differences. Secondly, we take Sichuan Yibin wine culture tourism as an example, a future study can further increase the source of research samples such as other wine tourism cities, to enhance the universality of research results. Finally, for smart wine tourism, tourists’ attitudes toward smart tools may also affect their WOM evaluation, future research can try to study the relationship between other variables and wine tourism WOM.

CONSENT
As per international standard or university standard, respondents' written consent has been collected and preserved by the author(s).

ACKNOWLEDGEMENT
This study was supported by Research Center of Culture Industrial Development (grant# WHCY2020B19), Research Center for China Panxi Rehabilitation Industry in 2020 (grant# pxky-zc-202003) and Yibin Social Science Union in 2020 (grant# YSSU-20131). The authors acknowledge their support. Corresponding author: Dr. TF Yen, email: 1722997311.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Alba GM, Emma JA, Cristina OP, Jorge PB. Towards the smart tourism destination:
Key factors in information source use on the tourist shopping journey. Tourism Management Perspectives, 2020;36: 100730.

23. Yen TF. Liquor city impression, destination relationship and word-of-mouth: An example of Guizhou Moutai smart liquor
tourism. Island Tourism Research, 2012; 1-16.